Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors
نویسندگان
چکیده
Nitrogen-doped banana peel-derived porous carbon foam (N-BPPCF) successfully prepared from banana peels is used as a binder-free electrode for supercapacitors. The N-BPPCF exhibits superior performance including high specific surface areas of 1357.6 m²/g, large pore volume of 0.77 cm³/g, suitable mesopore size distributions around 3.9 nm, and super hydrophilicity with nitrogen-containing functional groups. It can easily be brought into contact with an electrolyte to facilitate electron and ion diffusion. A comparative analysis on the electrochemical properties of BPPCF electrodes is also conducted under similar conditions. The N-BPPCF electrode offers high specific capacitance of 185.8 F/g at 5 mV/s and 210.6 F/g at 0.5 A/g in 6 M KOH aqueous electrolyte versus 125.5 F/g at 5 mV/s and 173.1 F/g at 0.5 A/g for the BPPCF electrode. The results indicate that the N-BPPCF is a binder-free electrode that can be used for high performance supercapacitors.
منابع مشابه
Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملHigh-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam
A facile approach composed of hydrothermal process and annealing treatment is proposed to directly grow cobalt-manganese composite oxide ((Co,Mn)3O4) nanostructures on three-dimensional (3D) conductive nickel (Ni) foam for a supercapacitor electrode. The as-fabricated porous electrode exhibits excellent rate capability and high specific capacitance of 840.2 F g(-1) at the current density of 10 ...
متن کاملNitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors
Nitrogen-doped porous activated carbon monoliths (NDP-ACMs) have long been the most desirable materials for supercapacitors. Unique to the conventional template based Lewis acid/base activation methods, herein, we report on a simple yet practicable novel approach to production of the three-dimensional NDP-ACMs (3D-NDP-ACMs). Polyacrylonitrile (PAN) contained carbon nanotubes (CNTs), being pre-d...
متن کاملCorrigendum: Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors
This corrects the article DOI: 10.1038/srep40259.
متن کاملAn evaporation-induced tri-consistent assembly route towards nitrogen-doped carbon microfibers with ordered mesopores for high performance supercapacitors.
Nitrogen-doped mesoporous carbon microfibers (NMCMFs) were prepared via an evaporation-induced tri-consistent assembly of a triblock copolymer, resols and prehydrolyzed tetraethoxy silane on natural silk followed by pyrolysis. The resultant NMCMFs inherit the advantages of both order mesoporous carbons (OMCs) and carbon microfibers (CMFs), such as uniform meso-channels, high surface area, high ...
متن کامل